Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
K
kurs_alx_pcz
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Patryk Czarnik
kurs_alx_pcz
Commits
a4e159e6
Commit
a4e159e6
authored
Dec 11, 2023
by
Patryk Czarnik
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ostatnie zmiany w Employees
parent
bfddc056
Show whitespace changes
Inline
Side-by-side
Showing
22 changed files
with
19 additions
and
342 deletions
+19
-342
.gitignore
.gitignore
+1
-1
employees.py
dzien8/emps3_dodatki/employees.py
+6
-2
p0_test_odczytu.py
dzien8/emps3_dodatki/p0_test_odczytu.py
+2
-2
p1_wypisz_dane.py
dzien8/emps3_dodatki/p1_wypisz_dane.py
+0
-10
p2_wypisz_bogatych.py
dzien8/emps3_dodatki/p2_wypisz_bogatych.py
+0
-10
p3_srednia_wszystkich.py
dzien8/emps3_dodatki/p3_srednia_wszystkich.py
+2
-2
p4_srednia_jeden_job_v1.py
dzien8/emps3_dodatki/p4_srednia_jeden_job_v1.py
+2
-2
p4_srednia_jeden_job_v2.py
dzien8/emps3_dodatki/p4_srednia_jeden_job_v2.py
+0
-14
p5_grupowanie_v1.py
dzien8/emps3_dodatki/p5_grupowanie_v1.py
+0
-33
p5_grupowanie_v2.py
dzien8/emps3_dodatki/p5_grupowanie_v2.py
+0
-22
p5_grupowanie_v3.py
dzien8/emps3_dodatki/p5_grupowanie_v3.py
+2
-2
p5_grupowanie_v4.py
dzien8/emps3_dodatki/p5_grupowanie_v4.py
+0
-16
p5_grupowanie_v5.py
dzien8/emps3_dodatki/p5_grupowanie_v5.py
+0
-19
p6_min_max_v1.py
dzien8/emps3_dodatki/p6_min_max_v1.py
+0
-23
p6_min_max_v2.py
dzien8/emps3_dodatki/p6_min_max_v2.py
+0
-16
p6_min_max_v3.py
dzien8/emps3_dodatki/p6_min_max_v3.py
+0
-15
p6_min_max_v4.py
dzien8/emps3_dodatki/p6_min_max_v4.py
+0
-21
p7_wypisz_posortowanych_v1.py
dzien8/emps3_dodatki/p7_wypisz_posortowanych_v1.py
+0
-9
p7_wypisz_posortowanych_v2.py
dzien8/emps3_dodatki/p7_wypisz_posortowanych_v2.py
+0
-7
podwyzka.py
dzien8/emps3_dodatki/podwyzka.py
+4
-3
prosty_przyklad.py
dzien8/emps3_dodatki/prosty_przyklad.py
+0
-5
zmienione.csv
dzien8/emps3_dodatki/zmienione.csv
+0
-108
No files found.
.gitignore
View file @
a4e159e6
...
...
@@ -10,4 +10,4 @@ __pycache__/
/dzien4/pliki/nowy_win.txt
/dzien4/pliki/ponumerowany.txt
/dzien4/pliki/posortowany.txt
/dzien8/
emps2_obiektowo
/zmienione.csv
/dzien8/
*
/zmienione.csv
dzien8/emps3_dodatki/employees.py
View file @
a4e159e6
...
...
@@ -22,13 +22,17 @@ class Employee:
return
f
'Pracownik nr {self.employee_id}: {self.first_name} {self.last_name} ({self.job_title}), pensja {self.salary}'
def
read_csv
(
file_path
=
'emps.csv'
):
# Tutaj wczytywanie danych z pliku zrobimy jako metodę statyczną wewnątrz klasy.
# Metoda statyczna nie przyjmuje parametru self i jest wywoływana nie na obiekcie, tylko na klasie.
@staticmethod
def
read_csv
(
file_path
=
'emps.csv'
):
with
open
(
file_path
,
mode
=
'r'
,
encoding
=
'utf-8'
)
as
file
:
file
.
readline
()
return
[
Employee
(
*
(
line
.
strip
()
.
split
(
Employee
.
SEP
)))
for
line
in
file
]
def
write_csv
(
emps
,
sciezka
):
@staticmethod
def
write_csv
(
emps
,
sciezka
):
with
open
(
sciezka
,
mode
=
'w'
,
encoding
=
'utf-8'
)
as
file
:
print
(
*
Employee
.
nazwy_kolumn
,
sep
=
Employee
.
SEP
,
file
=
file
)
for
emp
in
emps
:
...
...
dzien8/emps3_dodatki/p0_test_odczytu.py
View file @
a4e159e6
from
employees
import
read_csv
from
employees
import
Employee
emps
=
read_csv
(
'emps.csv'
)
emps
=
Employee
.
read_csv
(
'emps.csv'
)
print
(
'Liczba odczytanych rekordów:'
,
len
(
emps
))
for
emp
in
emps
:
print
(
emp
)
dzien8/emps3_dodatki/p1_wypisz_dane.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
# Wszystkie szczegóły związane z dostępem do pliku, są ukryte w tej funkcji
emps
=
read_csv
(
'emps.csv'
)
# Aby wykonać operacje "dla każdego pracownika", wykonujemy pętlę po elementach listy `emps`.
# Pojedynczy element `emp` to obiekt klasy `Employee`, a dane pracownika są dostępne3 w postaci atrybutów tego obiektu,
# np. `.first_name`, `.salary`
for
emp
in
emps
:
print
(
f
'Pracownik {emp.first_name} {emp.last_name} ({emp.job_title}) zarabia ${emp.salary}'
)
dzien8/emps3_dodatki/p2_wypisz_bogatych.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
ile
=
0
for
emp
in
emps
:
if
emp
.
salary
>=
10
_000
:
print
(
f
'Pracownik {emp.first_name} {emp.last_name} ({emp.job_title}) zarabia ${emp.salary}'
)
ile
+=
1
print
(
'Liczba bogatych:'
,
ile
)
dzien8/emps3_dodatki/p3_srednia_wszystkich.py
View file @
a4e159e6
from
employees
import
read_csv
from
employees
import
Employee
emps
=
read_csv
(
'emps.csv'
)
emps
=
Employee
.
read_csv
(
'emps.csv'
)
suma
=
0
for
emp
in
emps
:
suma
+=
emp
.
salary
...
...
dzien8/emps3_dodatki/p4_srednia_jeden_job_v1.py
View file @
a4e159e6
from
employees
import
read_csv
from
employees
import
Employee
emps
=
Employee
.
read_csv
(
'emps.csv'
)
jaki_job
=
input
(
'Podaj nazwę stanowiska, np. Programmer: '
)
emps
=
read_csv
(
'emps.csv'
)
ile
=
0
suma
=
0
for
emp
in
emps
:
...
...
dzien8/emps3_dodatki/p4_srednia_jeden_job_v2.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
import
statistics
emps
=
read_csv
(
'emps.csv'
)
jobs
=
{
emp
.
job_title
for
emp
in
emps
}
print
(
'Dostępne stanowiska:'
,
jobs
)
jaki_job
=
input
(
'Podaj nazwę stanowiska, np. Programmer: '
)
try
:
srednia
=
statistics
.
mean
(
emp
.
salary
for
emp
in
emps
if
emp
.
job_title
==
jaki_job
)
print
(
f
'Średnia na stanowisku {jaki_job} jest równa {srednia}'
)
except
statistics
.
StatisticsError
:
print
(
f
'Nikt nie pracuje na stanowisku {jaki_job}'
)
dzien8/emps3_dodatki/p5_grupowanie_v1.py
deleted
100644 → 0
View file @
bfddc056
''' Dla każdej wartości job_title, która występuje w danych,
oblicz liczbę pracowników i średnią pensję.
Spodziewane wyniki (może w innej kolejności):
* President - 1 - 24000
* Administation Vice President - 2 - 17000
* Programmer - 5 - 5760
* ... ????
'''
# W tej wersji wielokrotnie przeglądamy cała listę:
# najpierw, aby ustalić, jakie są joby, a następnie dla każdego joba licząc średnią tak, jak w zadaniu 4.
# Ta wersja nie jest optymalna pod względem wydajności.
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
# etap 1: zbieranie informacji o jobach
jobs
=
set
()
for
emp
in
emps
:
jobs
.
add
(
emp
.
job_title
)
# print(jobs)
# etap 2: dla każdego joba liczymy liczbę oraz sumę pracowników i wypisujemy średnią
for
job
in
jobs
:
ile
=
0
suma
=
0
for
emp
in
emps
:
if
emp
.
job_title
==
job
:
suma
+=
emp
.
salary
ile
+=
1
srednia
=
suma
/
ile
print
(
f
'| {job:32} | {ile:2} | {srednia:8.2f} |'
)
dzien8/emps3_dodatki/p5_grupowanie_v2.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
# W tej wersji dane (sumę pensji i liczbę osoób) zbieramy do słowników, gdzie kluczami są nazwy jobów.
emps
=
read_csv
(
'emps.csv'
)
ilosci
=
{}
sumy
=
{}
for
emp
in
emps
:
if
emp
.
job_title
in
sumy
:
sumy
[
emp
.
job_title
]
+=
emp
.
salary
ilosci
[
emp
.
job_title
]
+=
1
else
:
sumy
[
emp
.
job_title
]
=
emp
.
salary
ilosci
[
emp
.
job_title
]
=
1
# print(sumy)
# print(ilosci)
for
job
in
sumy
.
keys
():
suma
=
sumy
[
job
]
ilosc
=
ilosci
[
job
]
srednia
=
suma
/
ilosc
print
(
f
'| {job:32} | {ilosc:2} | {srednia:8.2f} |'
)
dzien8/emps3_dodatki/p5_grupowanie_v3.py
View file @
a4e159e6
from
employees
import
read_csv
from
employees
import
Employee
emps
=
read_csv
(
'emps.csv'
)
emps
=
Employee
.
read_csv
(
'emps.csv'
)
slownik
=
{}
# W słowniku kluczem jest job, a wartością jest dwuelementowa lista: [count, sum]
...
...
dzien8/emps3_dodatki/p5_grupowanie_v4.py
deleted
100644 → 0
View file @
bfddc056
from
collections
import
defaultdict
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
ilosci
=
defaultdict
(
int
)
sumy
=
defaultdict
(
float
)
for
emp
in
emps
:
sumy
[
emp
.
job_title
]
+=
emp
.
salary
ilosci
[
emp
.
job_title
]
+=
1
for
job
in
sumy
.
keys
():
suma
=
sumy
[
job
]
ilosc
=
ilosci
[
job
]
srednia
=
suma
/
ilosc
print
(
f
'| {job:32} | {ilosc:2} | {srednia:8.2f} |'
)
dzien8/emps3_dodatki/p5_grupowanie_v5.py
deleted
100644 → 0
View file @
bfddc056
from
collections
import
defaultdict
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
# Jako parametr defaultdict wpisuje się "przepis na nowy element".
# Gdy podajemy przykłądowo int, to używane jest to w taki sposób, że jest wywoływane int() , a to daje wynik 0.
# Tutaj podamy funkcję, która nie pobiera argumentów, a wyniku zwraca nową listę zaweirającą dwa zera.
slownik
=
defaultdict
(
lambda
:
[
0
,
0
])
for
emp
in
emps
:
slownik
[
emp
.
job_title
][
0
]
+=
1
slownik
[
emp
.
job_title
][
1
]
+=
emp
.
salary
print
(
slownik
)
print
()
for
job
,
(
ilosc
,
suma
)
in
slownik
.
items
():
srednia
=
suma
/
ilosc
print
(
f
'| {job:32} | {ilosc:2} | {srednia:8.2f} |'
)
dzien8/emps3_dodatki/p6_min_max_v1.py
deleted
100644 → 0
View file @
bfddc056
# Wypisz dane pracownika, który zarabia najwięcej, i pracownika, który zarabia najmniej.
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
max_salary
=
0
max_ktotojest
=
''
min_salary
=
1
_000_000_000
# min_salary = float('+inf')
min_ktotojest
=
''
for
emp
in
emps
:
if
emp
.
salary
>
max_salary
:
max_salary
=
emp
.
salary
max_ktotojest
=
emp
.
first_name
+
' '
+
emp
.
last_name
for
emp
in
emps
:
if
emp
.
salary
<
min_salary
:
min_salary
=
emp
.
salary
min_ktotojest
=
emp
.
first_name
+
' '
+
emp
.
last_name
print
(
'Najwyższa pensja:'
,
max_salary
,
'Pracownik:'
,
max_ktotojest
)
print
(
'Najniższa pensja:'
,
min_salary
,
'Pracownik:'
,
min_ktotojest
)
dzien8/emps3_dodatki/p6_min_max_v2.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
# Uwaga! Pod nazwami min i max znajdują się wbudowane funkcje Pythona.
# Można pod te nazwy wpisać własne wartości, ale wtedy w obrębie tego programu nie będą dostępne funkcje min i max
max
=
None
min
=
None
for
emp
in
emps
:
if
max
is
None
or
emp
.
salary
>
max
.
salary
:
max
=
emp
if
min
is
None
or
emp
.
salary
<
min
.
salary
:
min
=
emp
print
(
'Najbogatszy:'
,
max
)
print
(
'Najbiedniejszy:'
,
min
)
dzien8/emps3_dodatki/p6_min_max_v3.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
# Na początku do min i max wpisujemy pierwszego pracownika, a później w pętli sprawdzamy, czy kotś ma większą / mniejszą pensję
max
=
emps
[
0
]
min
=
emps
[
0
]
for
emp
in
emps
:
if
emp
.
salary
>
max
.
salary
:
max
=
emp
if
emp
.
salary
<
min
.
salary
:
min
=
emp
print
(
'Najbogatszy:'
,
max
)
print
(
'Najbiedniejszy:'
,
min
)
dzien8/emps3_dodatki/p6_min_max_v4.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
# etap 1: ustalamy wartości minimalnej i maksymalnej pensji
max_salary
=
max
(
emp
.
salary
for
emp
in
emps
)
min_salary
=
min
(
emp
.
salary
for
emp
in
emps
)
# etap 2: wypisujemy te osoby, które mają właśnie taką pensję
print
(
'Najwyższa pensja:'
,
max_salary
)
print
(
'Zarabia tyle:'
)
for
emp
in
emps
:
if
emp
.
salary
==
max_salary
:
print
(
emp
)
print
()
print
(
'Najniższa pensja:'
,
min_salary
)
print
(
'Zarabia tyle:'
)
for
emp
in
emps
:
if
emp
.
salary
==
min_salary
:
print
(
emp
)
dzien8/emps3_dodatki/p7_wypisz_posortowanych_v1.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
print
(
f
'Wczytano {len(emps)} rekordów:'
)
emps
.
sort
(
key
=
lambda
emp
:
emp
.
salary
,
reverse
=
True
)
for
emp
in
emps
:
print
(
emp
)
dzien8/emps3_dodatki/p7_wypisz_posortowanych_v2.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
read_csv
emps
=
read_csv
(
'emps.csv'
)
print
(
f
'Wczytano {len(emps)} rekordów:'
)
for
emp
in
sorted
(
emps
,
key
=
lambda
emp
:
emp
.
salary
,
reverse
=
True
):
print
(
emp
)
dzien8/emps3_dodatki/podwyzka.py
View file @
a4e159e6
from
employees
import
*
from
employees
import
Employee
emps
=
Employee
.
read_csv
(
'emps.csv'
)
emps
=
read_csv
(
'emps.csv'
)
job
=
input
(
'Podaj nazwę stanowiska: '
)
podwyzka
=
int
(
input
(
'Podaj kwotę podwyżki: '
))
...
...
@@ -8,4 +9,4 @@ for emp in emps:
if
emp
.
job_title
==
job
:
emp
.
salary
+=
podwyzka
write_csv
(
emps
,
'zmienione.csv'
)
Employee
.
write_csv
(
emps
,
'zmienione.csv'
)
dzien8/emps3_dodatki/prosty_przyklad.py
deleted
100644 → 0
View file @
bfddc056
from
employees
import
Employee
steven
=
Employee
(
100
,
'Steven'
,
'King'
,
'President'
,
24000
,
'2001-01-01'
,
'Executive'
,
'Jasna 14/16a'
,
'01-321'
,
'Warszawa'
,
'Polska'
)
print
(
steven
)
print
(
f
'{steven.first_name} pracuje w mieście {steven.city}'
)
dzien8/emps3_dodatki/zmienione.csv
deleted
100644 → 0
View file @
bfddc056
employee_id;first_name;last_name;job_title;salary;hire_date;department_name;address;postal_code;city;country
100;Steven;King;President;24000;1997-06-17;Executive;2004 Charade Rd;98199;Seattle;United States of America
101;Neena;Kochhar;Administration Vice President;17000;1999-09-21;Executive;2004 Charade Rd;98199;Seattle;United States of America
102;Lex;De Haan;Administration Vice President;17000;2003-01-13;Executive;2004 Charade Rd;98199;Seattle;United States of America
103;Alexander;Hunold;Programmer;9009;2000-01-03;IT;2014 Jabberwocky Rd;26192;Southlake;United States of America
104;Bruce;Ernst;Programmer;6009;2001-05-21;IT;2014 Jabberwocky Rd;26192;Southlake;United States of America
105;David;Austin;Programmer;4809;2007-06-25;IT;2014 Jabberwocky Rd;26192;Southlake;United States of America
106;Valli;Pataballa;Programmer;4809;2008-02-05;IT;2014 Jabberwocky Rd;26192;Southlake;United States of America
107;Diana;Lorentz;Programmer;4209;2009-02-07;IT;2014 Jabberwocky Rd;26192;Southlake;United States of America
108;Nancy;Greenberg;Finance Manager;12000;2004-08-17;Finance;2004 Charade Rd;98199;Seattle;United States of America
109;Daniel;Faviet;Accountant;9000;2004-08-16;Finance;2004 Charade Rd;98199;Seattle;United States of America
110;John;Chen;Accountant;8200;2007-09-28;Finance;2004 Charade Rd;98199;Seattle;United States of America
111;Ismael;Sciarra;Accountant;7700;2007-09-30;Finance;2004 Charade Rd;98199;Seattle;United States of America
112;Jose Manuel;Urman;Accountant;7800;1998-03-07;Finance;2004 Charade Rd;98199;Seattle;United States of America
113;Luis;Popp;Accountant;6900;2009-12-07;Finance;2004 Charade Rd;98199;Seattle;United States of America
114;Den;Raphaely;Purchasing Manager;11000;2004-12-07;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
115;Alexander;Khoo;Purchasing Clerk;3100;2005-05-18;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
116;Shelli;Baida;Purchasing Clerk;2900;2007-12-24;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
117;Sigal;Tobias;Purchasing Clerk;2800;2007-07-24;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
118;Guy;Himuro;Purchasing Clerk;2600;2008-11-15;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
119;Karen;Colmenares;Purchasing Clerk;2500;2009-08-10;Purchasing;2004 Charade Rd;98199;Seattle;United States of America
120;Matthew;Weiss;Stock Manager;8000;2006-07-18;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
121;Adam;Fripp;Stock Manager;8200;2007-04-10;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
122;Payam;Kaufling;Stock Manager;7900;2005-05-01;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
123;Shanta;Vollman;Stock Manager;6500;2007-10-10;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
124;Kevin;Mourgos;Stock Manager;5800;2009-11-16;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
125;Julia;Nayer;Stock Clerk;3200;2007-07-16;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
126;Irene;Mikkilineni;Stock Clerk;2700;2008-09-28;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
127;James;Landry;Stock Clerk;2400;2009-01-14;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
128;Steven;Markle;Stock Clerk;2200;2010-03-08;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
129;Laura;Bissot;Stock Clerk;3300;2007-08-20;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
130;Mozhe;Atkinson;Stock Clerk;2800;2007-10-30;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
131;James;Marlow;Stock Clerk;2500;2007-02-16;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
132;TJ;Olson;Stock Clerk;2100;2009-04-10;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
133;Jason;Mallin;Stock Clerk;3300;2006-06-14;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
134;Michael;Rogers;Stock Clerk;2900;2008-08-26;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
135;Ki;Gee;Stock Clerk;2400;2009-12-12;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
136;Hazel;Philtanker;Stock Clerk;2200;2011-02-06;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
137;Renske;Ladwig;Stock Clerk;3600;2005-07-14;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
138;Stephen;Stiles;Stock Clerk;3200;2007-10-26;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
139;John;Seo;Stock Clerk;2700;2008-02-12;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
140;Joshua;Patel;Stock Clerk;2500;2008-04-06;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
141;Trenna;Rajs;Stock Clerk;3500;2005-10-17;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
142;Curtis;Davies;Stock Clerk;3100;2007-01-29;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
143;Randall;Matos;Stock Clerk;2600;2008-03-15;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
144;Peter;Vargas;Stock Clerk;2500;2008-07-09;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
145;John;Russell;Sales Manager;14000;2006-10-01;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
146;Karen;Partners;Sales Manager;13500;2007-01-05;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
147;Alberto;Errazuriz;Sales Manager;12000;2007-03-10;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
148;Gerald;Cambrault;Sales Manager;11000;2009-10-15;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
149;Eleni;Zlotkey;Sales Manager;10500;2000-01-29;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
150;Peter;Tucker;Sales Representative;10000;2007-01-30;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
151;David;Bernstein;Sales Representative;9500;2007-03-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
152;Peter;Hall;Sales Representative;9000;2007-08-20;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
153;Christopher;Olsen;Sales Representative;8000;2008-03-30;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
154;Nanette;Cambrault;Sales Representative;7500;2008-12-09;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
155;Oliver;Tuvault;Sales Representative;7000;2009-11-23;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
156;Janette;King;Sales Representative;10000;2006-01-30;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
157;Patrick;Sully;Sales Representative;9500;2006-03-04;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
158;Allan;McEwen;Sales Representative;9000;2006-08-01;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
159;Lindsey;Smith;Sales Representative;8000;2007-03-10;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
160;Louise;Doran;Sales Representative;7500;2007-12-15;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
161;Sarath;Sewall;Sales Representative;7000;2008-11-03;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
162;Clara;Vishney;Sales Representative;10500;2007-11-11;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
163;Danielle;Greene;Sales Representative;9500;2009-03-19;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
164;Mattea;Marvins;Sales Representative;7200;2010-01-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
165;David;Lee;Sales Representative;6800;2000-02-23;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
166;Sundar;Ande;Sales Representative;6400;2000-03-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
167;Amit;Banda;Sales Representative;6200;2000-04-21;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
168;Lisa;Ozer;Sales Representative;11500;2007-03-11;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
169;Harrison;Bloom;Sales Representative;10000;2008-03-23;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
170;Tayler;Fox;Sales Representative;9600;2008-01-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
171;William;Smith;Sales Representative;7400;2009-02-23;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
172;Elizabeth;Bates;Sales Representative;7300;2009-03-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
173;Sundita;Kumar;Sales Representative;6100;2010-04-21;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
174;Ellen;Abel;Sales Representative;11000;2006-05-11;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
175;Alyssa;Hutton;Sales Representative;8800;2007-03-19;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
176;Jonathon;Taylor;Sales Representative;8600;2008-03-24;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
177;Jack;Livingston;Sales Representative;8400;2008-04-23;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
178;Kimberely;Grant;Sales Representative;7000;2009-05-24;;;;;
179;Charles;Johnson;Sales Representative;6200;2011-01-04;Sales;Magdalen Centre, The Oxford Science Park;OX9 9ZB;Oxford;United Kingdom
180;Winston;Taylor;Shipping Clerk;3200;2008-01-24;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
181;Jean;Fleaur;Shipping Clerk;3100;2008-02-23;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
182;Martha;Sullivan;Shipping Clerk;2500;2009-06-21;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
183;Girard;Geoni;Shipping Clerk;2800;2000-02-03;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
184;Nandita;Sarchand;Shipping Clerk;4200;2006-01-27;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
185;Alexis;Bull;Shipping Clerk;4100;2007-02-20;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
186;Julia;Dellinger;Shipping Clerk;3400;2008-06-24;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
187;Anthony;Cabrio;Shipping Clerk;3000;2009-02-07;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
188;Kelly;Chung;Shipping Clerk;3800;2007-06-14;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
189;Jennifer;Dilly;Shipping Clerk;3600;2007-08-13;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
190;Timothy;Gates;Shipping Clerk;2900;2008-07-11;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
191;Randall;Perkins;Shipping Clerk;2500;2009-12-19;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
192;Sarah;Bell;Shipping Clerk;4000;2006-02-04;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
193;Britney;Everett;Shipping Clerk;3900;2007-03-03;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
194;Samuel;McCain;Shipping Clerk;3200;2008-07-01;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
195;Vance;Jones;Shipping Clerk;2800;2009-03-17;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
196;Alana;Walsh;Shipping Clerk;3100;2008-04-24;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
197;Kevin;Feeney;Shipping Clerk;3000;2008-05-23;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
198;Donald;OConnell;Shipping Clerk;2600;2009-06-21;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
199;Douglas;Grant;Shipping Clerk;2600;2010-01-13;Shipping;2011 Interiors Blvd;99236;South San Francisco;United States of America
200;Jennifer;Whalen;Administration Assistant;4400;1987-09-17;Administration;2004 Charade Rd;98199;Seattle;United States of America
201;Michael;Hartstein;Marketing Manager;13000;2006-02-17;Marketing;147 Spadina Ave;M5V 2L7;Toronto;Canada
202;Pat;Fay;Marketing Representative;6000;2007-08-17;Marketing;147 Spadina Ave;M5V 2L7;Toronto;Canada
203;Susan;Mavris;Human Resources Representative;6500;2004-06-07;Human Resources;8204 Arthur St;;London;United Kingdom
204;Hermann;Baer;Public Relations Representative;10000;2004-06-07;Public Relations;Schwanthalerstr. 7031;80925;Munich;Germany
205;Shelley;Higgins;Accounting Manager;12000;2004-06-07;Accounting;2004 Charade Rd;98199;Seattle;United States of America
206;William;Gietz;Public Accountant;8300;2004-06-07;Accounting;2004 Charade Rd;98199;Seattle;United States of America
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment